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Abstract

Stresses induced by thermal mismatch are known to be a major cause of failure in a wide variety of composite
materials and devices ranging from metal-ceramic composites to passivated interconnect lines in integrated circuits.
One of the most effective procedures used to reduce these thermal stresses is the addition of a compliant intermediate or
interphase layer between the different material components.

This paper is concerned with the interfacial thermal stress analysis of an elliptic inclusion embedded within an infinite
matrix with uniform change in temperature. A compliant interphase layer is assumed to occupy the region between the
inclusion and the matrix. This interphase layer is modeled as a spring layer with vanishing thickness (henceforth re-
ferred to as the interface between the inclusion and the matrix). Its behavior is based on the assumption that tractions
are continuous but displacements are discontinuous across the interface.

Complex variable techniques are used to obtain infinite series representations of the thermal stresses which, when
evaluated numerically, demonstrate how the peak interfacial thermal stresses vary with the aspect ratio of the inclusion
and the parameter /1 describing the interface. In addition, and perhaps most significantly, for different aspect ratios of
the elliptic inclusion, we identify a specific value (4*) of the interface parameter /2 which corresponds to the maximum
peak thermal stress along the inclusion—matrix interface. Similarly, for different aspect ratios, we identify a specific
value of & (also referred to as #* in the paper) which corresponds to the peak maximum thermal strain energy density
along the interface (J. Appl. Mech. 57 (1990) 956-963). In each case, we plot the relationship between the new pa-
rameter 4* and the aspect ratio of the ellipse. This gives significant and valuable information regarding the failure of the
interface using two established failure criteria. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mechanical failure resulting from residual stresses induced by thermal mismatch in composite materials
and electromechanical devices has received considerable attention recently (see, e.g., Wikstrom et al., 1999;
Gouldstone et al., 1998; Ru, 1998a; Shen, 1998; Dao et al., 1997; Gleixner et al., 1997; Wu et al., 1996; Lee
and Erdogan, 1995; Yeo et al., 1995; Williamson et al., 1993). Most of the existing studies have focused on
multilayered material systems. However, many practical problems require a systematic study of the effects
of interphase layers on thermal mismatch induced stresses in inclusion/matrix systems. For example, the
failure of interconnect lines due to thermal stress-induced voiding has become a major issue in the design of
reliable integrated circuits. In this case, the line is subjected to large tensile stresses upon cooling from high
passivation deposition temperatures. For example, Niwa et al. (1990) and Korhonen et al. (1991) have
modeled the passivated line as an elongated ellipsoid surrounded by an infinite homogeneous matrix. One
of the most effective procedures for the reduction of thermal stresses concerns the addition of an inter-
mediate layer, with appropriate geometry and thermomechanical properties, between different material
components where elevated thermal stresses occur. This procedure has been widely used in many practical
problems where the thermal mismatch-induced stresses are of vital importance to mechanical integrity, such
as thermal barrier coatings (see, e.g., Lee and Erdogan, 1995), electromechanical devices (see, e.g., Wu
et al., 1996), and metal-ceramic composites (see, e.g., Williamson et al., 1993). In doing so, the problem is
reduced to one of the analysis of thermal stresses within an elliptic inclusion surrounded by an interphase
layer. Unfortunately, in contrast to the well-known uniform stress state within a single elliptic inclusion
perfectly bonded to the surrounding (infinite) matrix, the stress field within an elliptic inclusion surrounded
by an interphase layer is extremely complicated and intrinsically non-uniform (see, e.g., Shen et al., 2000a,b).
In particular, to isolate the role of thermal mismatch, Niwa et al. (1990, 1992) have neglected the elastic
mismatch between the line and the surrounding materials. Very recently, Ru (1998a) studied the thermal
stresses within a three-phase elliptical inclusion with the similar simplification. Especially, Ru (1998a) also
assumed the interphase layer is bounded by two confocal ellipses. However, the more realistic case is the
“equal thickness” interphase layer, which corresponds to the present interface model (2 = constant). Re-
cently, for anti-plane shear deformations, Ru et al. (1999) proved that the residual/thermal stress can be
reduced to a fraction of its original value when a compliant interphase layer is inserted between the elliptic
inclusion and its surrounding matrix. Of greater theoretical and practical interest, however, is the corre-
sponding plane problem. Namely, the effect of a compliant interphase layer on the thermal stresses induced
by the plane-strain deformations of an elliptic inclusion.

In many cases, the compliant layer between the inclusion and the surrounding material (matrix) may be
considered to be a very thin interphase layer, referred to in the literature as an imperfect interface. Problems
involving an elastic inclusion with imperfect interface have received a considerable amount of attention in
the literature (see, e.g., Ru and Schiavone, 1997; Hashin, 1990, 1991a,b; Jasiuk and Tong, 1989; Gao, 1995;
Tsuchida et al., 1986). Interest in these problems is motivated by the study of interface damage in com-
posites (e.g., debonding, sliding and/or cracking across an interface) and its subsequent effect on material
properties. One of the more widely used models of an imperfect interface (see, e.g., Achenbach and Zhu,
1989, 1990; Hashin, 1990, 1991a,b; Gao, 1995) is based on the assumption that tractions are continuous but
displacements are discontinuous across the interface. More precisely, jumps in the displacement compo-
nents are assumed to be proportional, in terms of ‘spring-factor-type’ interface parameters, to their re-
spective interface traction components. According to Hashin (1991b), the imperfect interface model is
appropriate for a thin compliant interphase layer with very small shear modulus (compared to inclusion
and matrix). When the compliant interphase layer is of “equal thickness™, the corresponding imperfect
interface parameters are uniform along the entire length of the material interface and the interface is re-
ferred to as homogeneously imperfect. Using this model, Hashin (1991b) examined the case of a spherical
inclusion imperfectly bonded to a three-dimensional matrix. In contrast to the case of perfect bonding,
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Hashin found that, under a remote uniform stress field, the state of stress inside the inclusion is no longer
uniform. The analogous result in plane elasticity has been established by Gao (1995) for a circular inclusion
and Qu (1993) for an elliptic inclusion with the so-called “weakened interface”. However, to the authors’
knowledge, the solution of the problem associated with plane deformations of an elliptic inclusion with
a homogeneously imperfect interface (or compliant interphase layer) subjected to a uniform change in
temperature has not been recorded in the literature.

In this paper, we use the homogeneously imperfect interface model mentioned above to study the ef-
fect of a compliant interphase layer on thermal stresses in an elliptic elastic inclusion embedded within an
infinite matrix under a uniform change in temperature. Both elastic mismatch and thermal mismatch will
be considered. It is well known that the interphase layer is often the site of nucleation of damage and voids
or cracks. In some instances, interfacial separation leads directly to catastrophic failure, while in other
circumstances failure results from void nucleation as a result of a sequence of inclusion decohesion events.
Consequently, it is of practical interest to examine the interfacial stresses in the presence of a compliant
interphase layer. Using complex variable techniques we obtain infinite series representations of the cor-
responding stresses which, when evaluated numerically, demonstrate how the peak thermal interfacial
stress varies with the parameter / describing the imperfect interface (the interphase layer). Perhaps most
significant is the fact that our results demonstrate that the peak thermal stress along the interface is a non-
monotonic function of 4. This allows us to identify a specific value #* of the interface parameter which
corresponds to the maximum peak thermal stress along the inclusion—-matrix interface. We also identify
another value (also referred to as 4*) of & which corresponds to the maximum peak thermal inter-
facial strain energy density as defined by Achenbach and Zhu (1990). In each case, we plot the rela-
tionship between this new parameter (4*) and the aspect ratio of the ellipse. This gives significant and
valuable information regarding the failure of the interface using two different yet well-established failure
criteria.

2. Problem formulation

Consider a domain in R?, infinite in extent, containing a single internal elastic inclusion with elastic
properties different from those of the surrounding matrix. The linearly elastic materials occupying the
matrix and the inclusion are assumed to be homogeneous and isotropic with associated shear moduli i, and
Wy, respectively. We represent the matrix by the domain S; and assume that the inclusion occupies an elliptic
region S, with center at the origin of the coordinate system. The ellipse I" will denote the inclusion—-matrix
interface. In what follows, the subscripts 1 and 2 will refer to the regions S; and S, respectively and (x, y)
will denote a generic point in R? referred to a Cartesian coordinate system.

It is well known that for plane deformations, the displacement components (u,, u,), stress (or traction)
components (0., 6,,, 0y,) and the components of the resultant force (£, F,) are given in terms of two an-
alytic functions ¢(z) and ¥(z) by (Muskhelishvili, 1963):

2p(uy +iuy) = Kk¢(2) — 2¢'(2) — (), (2.1)
Ou+ 0 = 2[¢/(2) + )] (2.2)
Gy — Oy + iy, =2 [zqs” (2) + n//(z)} , (2.3)
Fo+iF, = —i[$() +26'@) + V@) . (2.4)
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Here, z = x + iy is the complex coordinate, v is Poisson’s ratio, k = 3 — 4v for plane strain and (3 — v) /(1 +
v) for plane stress, and | ]Z represents the change in the corresponding function in moving from point p to
point ¢ along any arc pq.

Across the interface I', the boundary displacements and tractions are written in normal-tangential
((n,t) =) coordinates as:

2u(uy, + iu)) = |kp(z) — 29/ (z) — Y(z) |7, (2.5)

O — 10, = ¢'(2) + ¢(2) — 0" (2) + ¥/ (2)]e™*), (2.6)
where 7 is the outward unit normal at z € I" which also is represented, in complex form, by €*? (where «
defines the angle between the normal direction #n and the positive x-axis). Assume that the elliptic inclusion
is bonded to the matrix by a homogeneously imperfect interface as described in Section 1. The interface
conditions are then given by

[[Urm - ignt]] = 07 Opp = hl[[“n]] - hluo

n’

0w = ha[[u]] — hot® on T. (2.7)

Here #; and &, are two non-negative interface parameters (basically the ‘spring-type constants’ of the in-
terface model having dimension of stress divided by length) and [[+]] = (%), — (%), denotes the jump across

I'. u) and w are the displacements induced by the uniform (stress-free) eigenstrains (&, ¢, l). The

classical case of perfect bonding is obtained from our model in the limiting case when h{y: hy = oo.
Similarly, the case of pure sliding can be obtained by setting 4, = 0 and 4 = oo while the completely
debonded interface can be described by setting #; = 4, = 0. Any remaining finite positive values of /#; and
hy represent the imperfectly bonded interface considered in this paper.

If we consider only residual stresses resulting from eigenstrains, the stresses at infinity must be zero.

Thus, the asymptotic conditions at infinity are given by

HiE) 2 00), () =0(1), | — oo, (23)
From Eq. (2.7) we can now write
0~ 0= ) ) P ) ) — ), (29)

where, from Eq. (2.5), we have

2[[un + 1] =

K1 (2) — (f)ll (z) = (2)

e 0 [ b (z) } - e:(Z) [Kz(f)z(Z) - @ - F(Z)},
ei(2) eiac(z)z . (2'10)
2l — i) == = [ 510) ~2912) ~ ()] ~ =~ [B:0) ~20(2) ~ ()], on T

1 2

1

and
: hy — h . o hi+h N
— [ — i) = == ez + (62 + ie3)Z)e ) — ”2L 2612 + (&2 — ie3)z]e™®, on T (2.11)
Here,
0 0 &L 801
g =——2 g ==—2 g =¢ .
2 2 x

The geometry of the problem is simplified by mapping the ellipse into the unit circle using the following
mapping function (Fig. 1) (Muskhelishvili, 1963):
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y n

z-plane &-plane

Fig. 1. Conformal mapping from z-plane to ¢-plane.

1/2
i 1 1\? . ,
z=m(é):§<Ré+R—§>, Ré:; T+ 1‘(;)1 , E={+in=r". (2.12)
Here,
R= “+Z>1 and 1=V — B (2.13)
u_

We imagine the enclosed region S, to be cut along the segment D; = {(x,0): —/ <x </} connecting the
foci. This cut may be thought of as an ellipse, which is confocal with I but whose minor axis is zero. Hence
the cut region in S, may be thought of as the limiting case of a region between two confocal ellipses. If in the
cut ellipse (5,),

$1(2) = $,(2), ¥s(2) =y,(2), z €Dy, (2.14)

the functions ¢, and y, will take only one and the same value when the point z approaches the segment
D, from either side. Consequently, the conditions (2.14) ensure that ¢, and y, are analytic functions
throughout the domain S;.

For convenience, we write ¢(&) = ¢p(m(&)) and Y(&) = Y(m(&)) so that in the mapped &£-plane, the dis-
placements, stresses and resultant forces take the form

2pu(ut, + i) = k(&) — m()B(E) — (2, (2.15)
O+ 0 = 2| 0() + B() |, (2.16)
Oy — Oxx + 210, = 2| D' (&) % + lI’(f)‘| , (2.17)
E+iF, = i[#(2) + m(© @) + ()] . (2.18)

respectively. Here, the prime denotes differentiation with respect to &, @(&) = ¢'(&)/m/(&) and ¥(&) =
W' (&) /m'(&). Similarly, the condition (2.14) becomes:

$(8) = $a(8),  ¥a(&) =¥a(8), VE:[¢|=1/R. (2.19)

The condition that tractions be continuous across the interface may be integrated to become a resultant
continuity condition of the form:
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(F +iF), = (R +iF),. (2.20)
For convenience, we introduce an auxiliary stress function Q(¢) (Stagni, 1991) such that
m(1/€)
m'(¢)
Thus, using Eqgs. (2.18), (2.20) and (2.21), continuity of tractions across the interface may be expressed in
the form:

$1(&) +Qi(8) = (O + 2(8), [¢[=1. (2.22)

The complex potentials ¢, (&) and Q,(&) are now expanded into their respective Laurent series in the matrix
and in the inclusion as follows:

Q(¢) =

¢'(&) + (). (2.21)

DO =S 45, 9 e =3 G, (2.23)
n=0 n=0

¢2(§) _ i(sn€n+l + Tﬂf*(fﬁl)), QZ(&) _ i(Dn5'1+l +Ené—(n+1)). (224)
n=0 n=0

Note that the constant terms have been omitted since they have no effect on the stress distribution. Fur-
thermore, Eq. (2.19) combined with Egs. (2.23) and (2.24) yields the following relation (Gong and Meguid,
1993; Stagni, 1991):

S, D, (n+1)S,

— — 4 —
= Bt (R =1, (1=0,1,23..). (2.25)

Consequently, Eq. (2.25) allows us to express the coefficients 7, E, in terms of the coefficients D,, S,. The
traction continuity condition (2.22) now becomes:

ZAné*(nJrl) _ ZE’E"H + Z(an . En)z—('ﬂ-l) _ Z(Snénﬂ + Tnéf(nﬂ)). (2.26)
n=0 n=0 n=0 n=0

Noting that ¢ = e on the interface, comparing coefficients, we obtain
6II = El’l +Sl‘l7 Cn = Eﬂ +§n7 (n = 07 17273 A ‘)7 (2’27)
Zﬂ :T}’l +Dn7 Aﬂ = 7;1 +5ﬂ? (n = 07 17273 i ')' (2'28)

Thus the coefficients 4,, C, can be expressed in terms of the coefficients D,, S,. The only unknown coef-
ficients are therefore D, and S,. These can obtained from the interface condition (2.9) as follows.
In the mapped &-plane, noting the following relations from England (1971),

ein(z) _ 6_2 (é) ia(z) __ é m/(é) —io(z) _E m/(é

~—

P rwer ¢ Trwer oo b (229)
Eq. (2.10) becomes
= oM@ ki (§) — Ai(E)  Kahy(§) — (&) N
2l i Iillm’(é)l{ m i } on l
(&) (11610 -2 1hs(E) - B(0) 230
2“”"““’”:|é||m'<«:>|{ " } on I
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Similarly, Eq. (2.6) becomes
R (I G { (df’(é)m/(é) - ¢;(é)m”(é)> m@  V© }em on T
[m' ()] m'(&)  m'()

m' (&) m'(&)
Multiplying the above expression by the (non-vanishing) factor [m’(¢)]*n’ (&), and eliminating /(&) using
Eq. (2.21), we obtain

[P0 [0, — 0] = () (¢ — e2702). (2.31)
Consequently, from Egs. (2.11) and (2.29)—(2.31), the interface condition (2.9) becomes:

(m/)Z(g _ eZi()Ql) _ <hl ;h2>(m/)2ﬁ|££|]:;/| |:K1¢1 - ﬁ1 . K2¢2 B ﬁ2:|

14 125)
hy +h o Em' [Kip — Q1 Koy — Q
+( 1 2>(m)2m’ ¢ / [ 16— Q1 K2y 2}
4 |&[ || 14 Hy
—
' | (hy—h ! . h +h ! .
_(m)ym’ | (= ho)Em le1m + (&5 + i )] +7( L+ ho)ém (177 + (e — ig3)m] p.
< ]m'| 2 2
For thermal stresses resulting from a uniform change in temperature,
ng = Sgy, 82y =0=¢g = ,ggx = g;)y, &6 =8&=>0.

Using Eq. (2.12), we can eliminate ¢ from the right-hand side of this expression and obtain:

'V/1 4 b*sin® 0 . -Q -Q

bm -+ b* sin {(h1 _ e [K1¢1 1 K2(h, > 281]4 }
4 My Hy

N bm'~/1 + b* sin® 0 Kipy — Q1 Ky — Q

hy + hy)m'e® 2 e 232
4 {( ke [ Hy ) &lm}}’ (232

where b* = (a®> — b?)/b*. From Egs. (2.23)(2.28), noting that ¢ = € on I', we obtain the final form of the
interface condition (2.9):

_ bRIm'\/1+ b* sin” 0

(m/)Z(g _ e2i69/> —

(m)’(¢f — ') = g {0 =)0y + (m +m)0,} z€T, (2.33)
where
Qn =g — gzeZi(‘? _ g3672i9 + ZMnéfi(rH»Z)@ _ ZNnéinG _ ZMnR—Zéfin(‘? + Z]VHR—Zéi(IH»Z)H, (234)
n=0 n=0 n=0 n=0
&l &l &l —
g1:*811R+$3 g2:7%7 g3:%7 Mn:AZDn+A3Tn;
_ 1 1
Nn:A4En+A5Sn7 Al = +Kla A2:_l+_; A3:ﬂ_ﬁ7 (235)
M T %) T %)

1 1 1
Ay =———, As=—+2,

T %) T %)

Furthermore, in this case, we have
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(062 — O(1>AT . Ao AT
2 2

(2.36)

& =

where AT is the uniform change (cooling) in temperature and « denotes the coefficient of thermal expan-

sion.
From Egs. (2.12) and (2.23)—(2.28), the interface condition (2.33) becomes

dO + dl e—if) + dzei(ﬂ + d3€—218 + d4e2i€) + dse—3i9 + d6e—4i6 + Z Unei(n+2)8 + Z V;le—i(n+4)6
n=0

n=0
= A(\/ 1 + b* sin’ 0) co+cie 4 crel? 4 f80 4 c36720 4 cge 70 4 fre7H0
+ anei(n+2)9 + Z Onei(n+4)9‘| ’ (2.37)
n=0 n=0
where
U, = 2P[-R* T, +D,)(n + 1) +2R* (T2 + Dyi2)(n +3) — (Tpiq + Dyig)(n +5)], (2.38)

Vi =20 [<2R*(T,1 + Dyt ) (n + 2) + 2(To43 + Dys3) (n + 4) + RY(E,a + Spia)(n 4 5)
— 2R*(Ey2 + Suia)(n 4 3) + (B, + 8,)(n + 1) + 2R*(T, + D,)) (n + 1) + (T2 + D) (n + 3)],

(2.39)
P,=Lys+ G+ J,, O0,=F,n—H,4—K,,
F,=2(hy + )RN, + (hy — hy)(1 + R™*)M,,
Gy = 2(h1 + h)R M, + (hy — hy)(1 + RN,
H, = (h + h)N, + (hy — hy)R*M,, (2.40)
Jy = (hy + ha))M, + (hy — ho)R7*N,,
K, = [(h + h)RN,, + (hy — h))M,JR,
L, = [(hi + h2)R*M, + (hy — h))N,]R 2,
Sfi =+ )@ — &R ) + (h = hy)(g1 + &R ),
fo=(h1 +h2)gs — (h — ha)ga,
(2.41)
fi=—(h+h)(@+ZR?) + (h — ) (g3 — 1R 7?),
fa = [+ ha)g, — (h — ha)gs]R 72,
41 :b(a+b)3 co = fi + Lo + Gy + Ho, (2.42)

2(a—>b)’
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a =L+ H, =1L+ Gy, s =fi+ Lo+ F+ H, ca =F + Hs,
dy = 4I*R*(Ty + Do) — 61*(T, + Dy) + 2I°R*(Ey + So),
dy = —41*(T, + D, — Ty — Do) + 4I°R*(E; + S),
d = 8PRX(T, + Dy) — 81(Ts + Ds),

dy = —2I%(Ty + Dy — 2Ty — 2Dy — 4Ty — 4D)) + 6I°R*(S, + E,) — 4I*R*(Ey + Sy), (2.43)

ds = — 4PR*(Ty + Dy + 2E, +2S,) + 4*(2T, + 2D, + 3T, + 3D,) + 8I°R*(E5 + S3),
ds = 0.

In the above expressions, the coefficients 7; and E; can be written in terms of S; and D; using Eq. (2.25).
Hence, the only remaining unknown coefficients are again D, and S,.
Next, we employ a method similar to that used in Shen et al. (2000a,b) by substituting the follow-

ing expression (valid for any positive number 5*, see Shen et al., 2000a,b) for v/1 + b* sin”  into Eq. (2.37):

V1 + b sin® 0 = Z Le'

k=—00

MO | @—i2M0 _ L (i2(M—1)0 | oi2(1-M0
e +e +e )

n(e
1 + ;72 _ n(ei29 + efi28)

00
i —i2k0
o~ [2k(€12k0 te 12/(() +12M
k=0

00 ) ) eiZM() + e—iZM() _ i’](Ciz(M_l)O + eiZ(l—M())
= b 4 e ) 4 (bl 2.44
; 2 ) + L x — (e + e-120) (2.44)
We obtain
[xzeiG + x4e—2i6 + x6e73i0 + x8674i8 _ xl0875i0 _ X11€76i9 +x Z Vnefi(n+4)9 - Vne—i(n+2)9
n=0 n=0
1 Z Ve 00 | x4 Lxsei® + xse2? — xpe? — xoet? 4 x Z U, elr2)0
n=0 n=0
> U g3 U
- Unel(n+4)0 - Unem()
n=0 n=0
— A{ Z[Zk(eiZkQ + efiZkG)(x _ n(eiZH + efiZO)) +12M(ei2M9 + e7i2M9 _ n(ei2(M71)(9
k=0
4 eiZ(lfMH))) o + clefi(') 4 Czei9 _|_f‘2e2i0 + C3672w 4 C4ef3i9 +ﬁef4i9 4 anei(n+2)9
n=0
+y 0,,e—i<”+4>0] } (2.45)
n=0

where
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1
n:ﬁ7 X:1+7’]2, XIZXdo—’?dL XZZXdl_ndS_nd27
x3 =xdy —ndy, x4 =xd3 —nds —ndy, xs=—ndy, x¢=xds—ndi, (246)
x7 =ndy, x3=xds—ndy, x9=0, x10=nds, x11=nds.
Furthermore, by equating coefficients of ¢’ in Eq. (2.45), we finally obtain
M
Z Wl = On. (2.47)

k=0

Hence W, and Q, are finally related to coefficients S; and D;. For example, for M = 5 and €*’(n = 3), we
obtain
Wiy = xP; — 2nPs — can, Wi = xPs — 2nPy — nPs + cox — ¢,
Wiy = xPs — nPs — nP; — cqn + c1x — ca1,
Wiz = xP; — nPs — nPy + c4x — c1 — 10y, (2.48)
Wiy = xPy — nP; — nP1y — can + x01 — n0s,
_ —x7+xU —nUs
—

Depending on the level of accuracy required, we may select different values of M corresponding to a set of
M linear equations and finally obtain the coefficients S; and D;.

Wis = Py — nPy — nO; + Os; 03

3. Numerical example and discussion

Let b =1 and consider the case of a silicon matrix surrounding a aluminum inclusion. The material
properties are described by (Pottinger et al., 1994; Evans et al., 1991):

E, =190 GPa, v; =028, pu; =7422GPa, o =2.5x107°/°C,

E, =62 GPa, v, =0.33, u,=2331GPa, o,=25x10"°/°C,

where E is Young’s modulus and v is Poisson’s ratio.

According to Hashin (1991b), the imperfect interface condition arises from the assumption of a thin
compliant layer of thickness ¢ < b with shear modulus u, < min{y,, i,} between the inclusion and the
matrix. This defines the physical meaning of the parameter /. Therefore, the imperfect interface parameter /
may be determined by the properties and thickness of the thin compliant layer.

In practice, the imperfect interface parameter / is rendered dimensionless by division by y, /b, where y, is
the shear modulus of the matrix, and b is the minor axis of the ellipse. In this calculation, two cases are
considered, 4, = hy, and h; = 3k, (basically, the imperfect interface parameters are related to Young’s
modulus and Shear’s modulus, Hashin, 1991b). The results from these two cases are compared and dis-
cussed.

In what follows, we present results for three different ranges of the aspect ratio a/b. In each case, the
number of coefficients in the corresponding series is chosen so that the error in the numerical calculations is
maintained below 1%. This is achieved simply by calculating an increasing sequence of partial sums from
each of the (uniformly convergent) infinite series representations and noting the minimum number of co-
efficients required to ensure that the difference between any two subsequent partial sums is less than 1% (see
Shen et al., 2000a).
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Fig. 2. Normal and tangential stresses along the interface for a/b = 3.5 in plane strain under a uniform change in temperature for
h =hy =h.
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Fig. 3. Normal and tangential stresses along the interface for a/b = 3.5 in plane strain under a uniform change in temperature for
hy =3h, = h.

Case 1. When 1 < a/b < 3.5, only the coeflicients Sy(Dy), Si1(D;) and S,(D,) are necessary to achieve the
desired accuracy. From Egs. (2.24) and (2.25), considering Eq. (2.12), it is easy to find ¢, and Q, expressed
in terms of Sy(Dy), Si(D) and S>(D,). Furthermore, 1, can be obtained from Eq. (2.21). For example, in
the present case

28 So 3%\ /22\ S [/22\* S, [2z\°

qﬁz(z)g—ﬁ—F(E—F)(T)"‘rﬁ(T) +F(7> . (3.1)
Once ¢, and y, are obtained, we can calculate the stress distribution inside the inclusion. In Figs. 2 and
3, the stress distribution along the interface (normal and tangential directions) in the two cases #; = /&, and
hy = 3h, is plotted for the value a/b = 3.5 and different values of the parameter 4. When 4 = 50, the local
stresses reach maximum values for both cases. For the present problem, it is found that there is no sig-
nificant difference between the cases 4, = h, and h; = 3h,. This is due to the fact that the interfacial stresses
caused by thermal contraction of the inclusion are dominated by the normal component so that the role of
the tangential interface parameter 4, is insignificant. Hence, for practical inclusion (structural) design, to

satisfy the basic requirements we need only consider the case 4 = hy or hy = 3h,.
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Case 2. When 3.5 < a/b< 7, only the coeflicients Sy(Dy), Si(D1), S2(D,) and S5(Ds) are necessary to
achieve the desired accuracy. As above, we can obtain ¢,, 2, and ¥, expressed in terms of Sy(Dy), S1(Dy),
S»(D,) and S5(D;). The corresponding interfacial stress distributions are presented in Figs. 4 and 5.

Case 3. When 7 < a/b < 10, only the coefficients So(Dy), Si(D1), S2(D»), S3(D;) and Ss(D4) are necessary
to achieve the desired accuracy. Again, we can obtain ¢,, Q, and V, expressed in terms of So(Dy), S1(Dy),
S»(D,), S3(D3) and Sy(Dy4). The corresponding interfacial stress distributions are presented in Figs. 6 and 7.

It is noted that for values a/b > 10 of the aspect ratio, the procedure is similar although a much larger
number of coefficients is required to evaluate the corresponding series to the desired accuracy.

From Figs. 2-7, it is clear that the homogeneously imperfect interface parameter / significantly influ-
ences the stress distribution although the aspect ratio of the elliptic inclusion does not significantly change
the locations of the maximum normal and tangential tractions along the interface and their magnitudes. It
is found that the normal stresses are always positive along the entire interface. Consequently, any possible
overlapping associated with the imperfect interface model used in this paper (see, Achenbach and Zhu,
1990; Hashin, 1991b) cannot occur in the present thermal stress problem.
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Fig. 4. Normal and tangential stresses along the interface for a/b =7 in plane strain under a uniform change in temperature for
hl = hz = h
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Fig. 5. Normal and tangential stresses along the interface for a/b =7 in plane strain under a uniform change in temperature for
h] = 3]’12 = h
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Fig. 6. Normal and tangential stresses along the interface for a/b = 10 in plane strain under a uniform change in temperature for
hi=h =h.
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Fig. 7. Normal and tangential stresses along the interface for a/b = 10 in plane strain under a uniform change in temperature for
hl = 3]’[2 = h

Again, since Figs. 2-7 show no significant difference in the results obtained between the cases #; = &, and
hy = 3hy, the following discussions are based solely on the results from the case h; = 3k, = h.

We employ two different methods to analyze and understand the relationship between the imperfect
interface parameter 4 and the failure of the interface. Firstly, we calculate the peak resultant traction
(stress) along the interface (henceforth referred to as the peak traction).

The peak traction is found by calculating the maximum value of the resultant traction 6 egyitant/ (AaE; AT)
(Hu, 1991) along the interface for a given aspect ratio and a given value of the parameter 4. Here, o esuitant 18
defined by the relation

_ 2 2
Oresultant = \/Gnormal + atangential (32)

and AoE; AT represents the stress induced by the uniform change (cooling) in the matrix temperature. This
peak traction is found always to occur at the point 8 = 0. Fig. 8 plots the peak traction as a function of the
imperfect interface parameter / for different aspect ratios.
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Fig. 8. The peak resultant traction along the interface varies as a function of the imperfect interface parameter / in plane strain under
a uniform change in temperature for 4, = 3h, = h.

From Fig. 8, it is clear that, for each aspect ratio (except a/b = 1 which is discussed below), the peak
traction is a non-monotonic function of the interface parameter 4. Consequently, for each aspect ratio,
there is a unique value of the interface parameter 4 which corresponds to maximum peak traction. The
collection of these values of 4 define the parameter 4* (see Fig. 13).

In contrast to the results established for the circular inclusion where the maximum peak traction appears
at & = oo (Ru, 1998D), the results established here indicate that the maximum peak traction for an elliptic
inclusion depends on the imperfect interface parameter and the aspect ratio of the ellipse. To explain this,
we note that for the present interphase layer model (Hashin, 1991b), in order to keep the thickness of the
adhesive layer between the elliptic inclusion and the matrix uniform (the “equal thickness” assumption
mentioned in Section 1), unlike the innermost edge, the outer edge of the interphase layer cannot be el-
liptical. This is perhaps why, in the case of a homogeneously imperfect interface, values of 4* correspond to
different values of local maximum peak stress for different values of the aspect ratio a/b (for the circular
inclusion with homogeneously imperfect interface the outer edge of the interphase layer is circular). This
makes the stress distributions within the elliptic inclusion intrinsically non-uniform.

Next we consider the strain energy density criterion used by Achenbach and Zhu (1990). For the simple
interphase model considered here, the strain energy criterion is particularly appropriate since it includes the
effects of both normal and shear tractions across the interphase. The energy per unit interphase, U, is
defined as:

2

_ 0 ormal O-tangential

2hy 2h,

By intrOdUCing Onormal = O-normal/(AaEl AT) and atangential = gtangential/(AaEl AT)9 we obtain, in dimen-
sionless form:
2 =2

— o 73 .
U = normal tangential ) 33
2h 2h, (3-3)
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It is now reasonable to assume that the interface will fail when U reaches a critical value, U,,, which
depends on the material properties. Figs. 9-11 plot the interfacial strain energy distribution along the in-
terface for different aspect ratios of the ellipse in the case 4; = 3k, = h. It is shown that the compliant layer
(described by the homogeneously imperfect interface parameter /) does significantly influence the inter-
facial strain energy distribution. In particular, when /4 reaches a specific value, the peak interfacial strain
energy reaches its maximum value.

Fig. 12 plots the peak (defined as in the case of peak traction above) strain energy per unit interphase U
as a function of the imperfect interface parameter i (= h; = 3h,). It is clear from Fig. 12 that U is again a
non-monotonic function of the interface parameter 4. This means that we can again define a new parameter
h* defined by values of /2 which correspond to maximum values of the peak strain energy per unit interphase
along the inclusion—matrix interface (see Fig. 14).
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Fig. 9. The interfacial strain energy (U) along the interface for a/b = 3.5 in plane strain under a uniform change in temperature for
hl = 3h2 = h
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Fig. 10. The interfacial strain energy (U) along the interface for a/b = 7 in plane strain under a uniform change in temperature for
hl = 3h2 = h
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Fig. 11. The interfacial strain energy (U) along the interface for a/b = 10 in plane strain under a uniform change in temperature for
hy =3h, = h.
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Fig. 12. The peak interfacial strain energy density varies as a function of the imperfect interface parameter /2 in plane strain under a
uniform change in temperature for 4, = 3k, = h.

We pause briefly to consider the case of the aspect ratio a/b = 1 (circular inclusion). For a/b = 1, from
Fig. 8, the peak traction is no longer a non-monotonic function of the interface parameter /# with the value
of h* occurring at &* = oo (as in Ru, 1998b). From Fig. 12, however, U is indeed a non-monotonic function
of the interface parameter / with 2* ~ 71. In addition, from Fig. 12, we may conclude that, since #* appears
only within a range corresponding to minimal stiffness of the spring layer, the energy density criterion is
suitable for extremely soft (compliant) interphase layers. According to Hashin (1991b), the imperfect in-
terface condition arises from the assumption of a thin flexible coating of thickness ¢ <« b with shear
modulus g, < min{y,, 4, } between the inclusion and the matrix. The physical meaning of the parameter /4
and the energy density criterion are therefore consistent with Hashin’s definition.
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It should be mentioned here that Achenbach and Zhu (1990) define the strain energy density by the
strain energy of the interphase layer per unit length along the interface. If the critical value of the strain
energy density corresponding to interfacial failure is of interest, a physically more reasonable definition is
U, (as defined above) divided by the thickness of the interphase layer since this more appropriately rep-
resents the strain-energy density of the interphase material. In adopting this new definition, it is readily seen
that the critical value U., should be proportional to the thickness of the interphase layer and that it then
approaches zero as the thickness of the interface layer vanishes (which corresponds to 4 = oo, since 4 is
inversely proportional to the thickness of the interphase layer).

Since values of #* correspond to local maximum peak stresses and maximum peak values of U and are
related to the mechanical properties and thickness of the adhesive layer between the inclusion and the
matrix, the parameter #* may be used as a control parameter when designing “thermal inclusions” (Hu,
1991). For example, in the case of a uniform change (cooling) in temperature and the aspect ratio a/b = 1
(circular inclusion), the peak traction in Fig. 8 corresponds to the value #* = oo (perfect bonding). How-
ever, when a/b = 3.5, the peak traction corresponds to A* = 50. Since A* is rendered dimensionless by
division by u, /b, for a specific aspect ratio, we can avoid the maximum peak traction, or indeed minimize
the maximum peak traction by adjusting g, (the shear moduli of the matrix), and the thickness of the
interphase layer (related to b).

In addition, from Figs. 8 and 12, we note that the effect of the interphase layer (the interface parameter
h) on the peak traction and peak strain energy density is sensitive to small aspect ratios ( < 5) of the elliptic
inclusion, but not to larger values of a/b. It should be emphasized that in the present case, the normal
stresses are always dominant compared to the shear stresses (see Figs. 2-8). This explains why other pa-
rameters such as the interfacial strain energy are not significantly affected when we use different values of 4,
(which is related to the shear stress).

The relationship between the parameter #* and the aspect ratio a/b is presented in Figs. 13 and 14 for the
two different failure criteria.
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Fig. 13. The relationship between 4* and a/b using the resultant traction criterion when sy = 3k, = h.
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Fig. 14. The relationship between #* and a/b using the interfacial strain energy density criterion for ) = 3h, = h.

4. Conclusions

The effect of a compliant interphase layer on residual stresses induced by a thermal mismatch is analyzed
for the plane deformations of an elliptic inclusion in which the interphase layer is modeled as an imperfect
interface. Particular emphasis is placed on the interfacial thermal stress distribution. Numerical compu-
tations and analysis of the subsequent results have led to the following conclusions:

1. The compliant interphase layer has a significant effect on the stress distribution along the interface. In
particular, it has been shown that the effect of the interphase layer (described by the interface parameter /)
on the peak traction and peak interfacial strain energy density is particularly significant for an elliptic
inclusion with relatively small aspect ratio (< 5), but not for larger values of a/b.

2. The peak interfacial traction and peak interfacial strain energy density have been found to be non-
monotonic functions of the interface parameter (4) describing the compliant interphase layer. Conse-
quently, for different aspect ratios, we have identified a unique finite value #* of the parameter 4 (# 0, c0)
which corresponds to maximum peak traction or maximum peak interfacial strain energy density along the
interface. Hence, since the parameter / is determined by the properties and thickness of the adhesive layer
between the elliptic inclusion and the matrix, it is possible to control the debonding and failure of the
interface by designing the value / for a given aspect ratio. This means that, for a specific aspect ratio, it is
possible to minimize peak interfacial stress by adjusting the mechanical properties or thickness of the
adhesive layer.

3. It has been indicated that the normal stresses are always positive along the entire interface. Therefore,
any possible overlapping associated with the imperfect interface model used in this paper cannot occur in
the present problem. This result shows that the imperfect interface model is particularly suitable for thermal
stress analysis of elastic inclusions with a compliant interphase layer.
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4. The present computations also indicate that there is no significant difference between the cases #; = &,
and h; = 3h,. This is due to the fact that the interfacial stresses caused by thermal contraction of the in-
clusion are dominated by the normal component so that the tangential interface parameter A, plays an
insignificant role.
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